The author and publisher of this book have used their best efforts in preparing this book. Their efforts include the development, research, and testing of the theories and problems to determine their effectiveness. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arise out of, the furnishing, performance or use of these programs.

This work is protected by United States copyright laws. Dissemination or sale of any part of this work (including on the World Wide Web) destroys the integrity of the work and is not permitted.

A Cataloging In Publication Record is available from the Library of Congress

Printed in the United States of America

Last Digit is the print number: 9 8 7 6 5 4 3 2 1

ISBN: 978-1-933250-06-9 Volume 1
 978-1-933250-07-6 Volume 2
 978-1-933250-08-3 Set of Volume 1 and 2

Copyright 2006 by Miele Enterprises, LLC

P.O. Box 157
Forney, TX 75126
www.pegasuslectures.com

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from Miele Enterprises, LLC.
Dedication

This book is dedicated to my wife Carol, my mother Graziella, my three-year-old daughter Gina Luisa, my twenty-month-old daughter Cristiana Graziella, and in loving memory of my grandmother Gina Luisa: four generations of women who have shaped my life.

Of course I cannot forget my twenty-month-old son Franco Raffaello whose hugs redefine affection, or my eldest son Paul (forever Paulie to me), who loves to sit in on lectures and “help out.” Finally, I must acknowledge my father Frank, whose tireless work and selflessness afforded me educational opportunities for which I feel blessed.
A special thanks to my friends and colleagues who took the time and made the effort as section reviewers and who provided quality images. Your time, suggestions, and expertise are much appreciated.

THANK YOU TO THE FOLLOWING 4TH EDITION SECTION REVIEWERS

Ali AbuRahma MD, RVT
Professor of Surgery, Chief of Vascular Surgery, and Medical Director of Vascular Laboratory
Robert C. Byrd Health Sciences Center of West Virginia University, Charleston, West Virginia

Catherine Carr-Hoefer RDMS, RDCS, RVT, RT, FSDMS
Assistant Director, Diagnostic Imaging, Radiology, Good Samaritan Regional Medical Center, Corvallis, Oregon

M. Robert De Jong RDMS, RDCS, RVT
Radiology Technical Manager, Ultrasound, The Johns Hopkins Medical Institutions, Baltimore, Maryland

Carol J. Gannon RN, RVT, RDCS, FSVU
Vice President, Pegasus Lectures, Inc., Dallas, Texas

Debra R. Goines BS, RVT, RDMS, RTR
Clinical Application Specialist, Mountain View, California

Mark J. Harry RDCS, RVT
Private Consultant, Cardiac Ultrasound Consulting, Des Moines, Iowa

Janice D. Hickey MRT, RDMS, BSc.
Clinical Instructor, Department of Emergency Medicine, Lehigh Valley Hospital, Allentown, Pennsylvania

Bonnie Johnson RDMS, RVT, FSVU
Director, Vascular Laboratory Services, Division of Vascular Surgery, Stanford University Medical Center, Palo Alto, CA

Ann Marie Kupinski PhD, RVT, FSVU
Technical Director, Karmondy Vascular Laboratory, The Vascular Group, Albany, NY
Assistant Professor of Surgery, Albany Medical College, Albany, NY

Naresh Kumar MD
Medical Director, Whitby Cardiovascular Institute, Whitby, Ontario, Canada

Ronald Mucci, PhD
Signal Processing Engineer, Tiverton, Massachusetts

Marsha M. Neumyer BS, RVT, FSVU, FAIUM
CEO and International Director, Vascular Diagnostic Educational Services, Vascular Resource Associates, Harrisburg, Pennsylvania

Kathleen Palmieri RVT
Senior Consultant, Cardiovascular Technology Resources (A Division of KRP Accreditation Specialists, Inc.), Skaneateles, New York

Patrick Rafter MS
Electrical Engineer, Boston, Massachusetts

Terry Reynolds BS, RDCS
Director, School of Cardiac Ultrasound, Arizona Heart Institute, Phoenix, Arizona

William B. Schroedter BS, RVT, FSVU
Technical Director, Quality Vascular Imaging, Inc., Venice, Florida

Robert Scissons RVT, FSVU
Technical Director, Bend Memorial Clinic Vascular Laboratory, Bend, Oregon

Franklin W. West RN, BSN, RVT, FSVU
Director of Professional Development, Pacific Vascular, Inc., Bothell, WA
THANK YOU TO THE FOLLOWING IMAGE CONTRIBUTORS

M. Robert De Jong RDMS, RDCS, RVT
Radiology Technical Manager, Ultrasound, The Johns Hopkins Medical Institutions, Baltimore, Maryland

Jeffrey C. Hill BS, RDCS, FASE
Echocardiographic Laboratory, Division of Cardiology, University of Massachusetts Medical Center, Worcester, Massachusetts

Robert Scissons RVT, FSVU
Technical Director, Bend Memorial Clinic Vascular Laboratory, Bend, Oregon

Michael Stasik RVT
Senior Technologist, Cleveland Clinic Foundation, Cleveland, Ohio

David Tomberlin ARRT, RDCS, RVT
Lead Clinical Specialist, Cardiovascular, Dallas, Texas

Susan Whitelaw RVT, RDMS, RTR
Laboratory Supervisor, Cleveland Clinic Foundation, Cleveland, Ohio

ATS Laboratories, Bridgeport, Connecticut

CIRS, Inc., Norfolk, Virginia

Flometrics, Inc., Solana Beach, California

GE Healthcare, Milwaukee, Wisconsin

Onda Corporation, Sunnyvale, California

Pacific Vascular, Inc., Bothell, Washington

Philips Medical Systems, Bothell, Washington

Precision Acoustics, Inc., United Kingdom

Siemens Ultrasound, Mountain View, California

and special thanks to Carol, Debbie, Eric, Halan, and Monica whose tireless efforts helped bring this book to fruition.
The greatest challenge with writing a textbook is that every reader brings a different level of knowledge, experience, and goals with him or her. For some people, this book represents their first exposure to ultrasound, and the book is to serve as a foundation on which to build. Others bring twenty or more years of experience and use this book as a way reinforcing the principles on which they perform their daily scans, or as a means to better understand new ultrasound techniques. Some are using this book in an ultrasound educational program, and others are using this book to prepare for a credentialing exam. Add to these differences in experience and goals the fact that some people experience dramatic feelings of fear and loathing just from hearing the word “physics” and you have a real conundrum when determining how to structure a textbook.

It should now be clear that the myriad goals and levels of experience make this a very challenging book to write. No one book can be everything to everyone. So instead, this book is really three books in one. Topics are divided into levels so that different level students can progress at a pace appropriate for their background, experience, and goals. Beginning students can follow Level 1 throughout the book, leaving Level 2 and Level 3 for when they have more ultrasound experience. More advanced students can choose to skip Level 1 and go right to Level 2, or use Level 1 as a refresher and use Level 2 as a means of preparing for the credentialing exams and advancing their knowledge. Level 3 is intended for those readers who really want to be challenged, or for content that is perhaps outside the areas generally tested on the credentialing exams. Extensive “Keypoints” sections are included at the conclusion of each chapter to both integrate concepts and serve as a study guide. The following is a description of each level:

Level 1: Ultrasound Physics Basics
Level 1 material focuses on the underlying physics and basic concepts critical for developing skill in the use of diagnostic ultrasound. Level 1 presumes no knowledge other than the basic abilities that come from general schooling. This level also serves as a good refresher for people who have good ultrasound experience but weaker backgrounds in physics and basic mathematics.

Level 2: Exam Level Ultrasound Physics
Level 2 material covers basic topics often outlined on the credentialing exams. Furthermore, Level 2 material is intended to generate a more profound understanding of the concepts so that the relationship of the physics fundamentals to the quality of the diagnostic ultrasound is understood. In other words, understanding Level 2 should not only prepare you for your board exams, but also result in better patient care.

Level 3: Advanced Ultrasound Physics Concepts and Applications
Level 3 material contains advanced topics, newer ultrasound techniques, or even just higher level material for those people who want to be challenged. At times, Level 3 will also contain specific applications of the physics to a specialty area such as cardiac, vascular, or general ultrasound.
Keypoints:

The keypoints serve as a chapter-by-chapter review of the fundamental principles. These sections serve both as a means of highlighting the main points as well as an exam review. Many of the keypoints included serve as the basis for exam questions, and as such should be reviewed by all exam candidates.

The Importance of Understanding the Structure of this Book

There are three reasons why understanding the structure of this book is so important:

1. So that you can customize how you use the book to your experience level and goals.
2. So that you have a clear indication of when you are knowledgeable to take a credentialing exam.
3. So that you have a systematic approach to increase your knowledge and clinical abilities from your current state.

In addition to serving as a core for an ultrasound physics program and a reference for your laboratory, this textbook has also been designed as an independent learning program to assist candidates preparing for their credentialing and board exams. Volume II, Appendix C contains a comprehensive Test Taking Strategies section to help improve your test taking skills including specific approaches detailing the incorporation of logic and reasoning skills for multiple choice exams. This section should be reviewed before and after reading the text. Volume II, Appendix M contains study suggestions, a study guide, and instructions for obtaining continuing medical education credits.

A Final Word about this Book’s Structure:

There are many ultrasound physics books that either overshoot or undershoot the intended goals of the reader. In addition, there are books that are very easy to read, but stop short of building the knowledge necessary to demonstrate competence on a credentialing exam. More importantly, these books fall short of imbuing the reader with the knowledge necessary to improve patient care. There are other books that, although technically excellent, presume too much knowledge for most people such that the reader feels as if they are drowning from the very first page. By writing this book in three different levels, I am hoping to reach out to a wider audience, increasing knowledge for both the experienced and the neophyte in ultrasound. I have chosen to create a book that takes students through the first level and beyond with a clear path to the knowledge necessary to demonstrate competency at the credentialing exam level. I hope I have written a book that does not presume so much knowledge that students become overwhelmed and are afraid to utilize the text, but on the other hand pushes and challenges the student to continue learning. In essence, I have tried to write this book so that each level becomes appropriate as the reader’s knowledge grows.

I believe the first step to knowledge is a true assessment of where you are, where you want to be, and what path you are willing to take to get there.

And so starts the journey …
Pegasus Lectures Physics and Instrumentation
Independent Learning Program

Jointly Sponsored by A. Webb Roberts Center for Continuing Medical Education of
Baylor Health Care System, Dallas
and Pegasus Lectures, Inc.

CME ENDURING MATERIAL INFORMATION

Faculty
Frank Miele, MSEE
President, Pegasus Lectures, Inc.

Frank graduated cum laude from Dartmouth College with a triple major in physics, mathematics, and engineering. While at Dartmouth, he was a Proctor Scholar and received citations for academic excellence in comparative literature, atomic physics and quantum mechanics, and real analysis. After completing his graduate work, Frank was awarded the Ruth Goodrich Prize for Academic Excellence. After co-teaching a course in digital electronics at Dartmouth, Frank was a research and design engineer and project leader, designing ultrasound equipment and electronics for more than ten years. In that role, Frank designed the hardware for the first parallel processing color Doppler system, created a Doppler system platform, designed HPRF Doppler, created the first released adaptive ultrasound processing technique, designed transtemporal Doppler and transcranial imaging, worked on multiple transducer project teams, and performed extensive clinical trial testing and research.

Frank has been the vice president of Research and Development and chief scientist for a medical device company investigating ultrasound related hemodynamic based measurements. As a researcher and designer of ultrasound, he has lectured across the country to sonographers, physicians, engineers, and students on myriad topics. Frank has authored the Ultrasound & Physics Instrumentation Independent Learning Program, produced multiple educational videos, created exam simulation programs, as well as created the analysis algorithm method and apparatus for evaluating educational performance (patent pending). Frank has served as an author and Co-Chief editor for the ASCeXAM Simulation Review CD in conjunction with the American Society of Echocardiography. He has also served on the faculty for the Society of Vascular Ultrasound and Society of Vascular Surgery and is credited with several ultrasound and medical device patents, trade secrets, and publications.

Purpose and Target Audience

This activity is designed to familiarize physicians and sonographers with the physics and instrumentation concepts employed in diagnostic ultrasound and provide a method to prepare for ultrasound physics credentialing exams and/or accreditation. It will be of interest to, but not limited to, radiologists, cardiologists, neurologists, vascular surgeons, cardiovascular surgeons, anesthesiologists, and/or physicians providing interpretation of diagnostic ultrasound, preparing for accreditation, and/or desiring to improve their understanding of ultrasound physics.
Medium
Printed text
CD

Objectives

Upon completion of the activity, the participant should be able to:

- Define areas of strengths and weaknesses in their understanding of ultrasound physics.
- Comprehend the effect of system controls and transducer parameters on the diagnostic quality of an ultrasound image.
- Demonstrate improved understanding of ultrasound physics and how physics can affect the integrity of a diagnostic image.
- Demonstrate improved interpretative skills for diagnostic ultrasound, Doppler and hemodynamic variables.
- Demonstrate improved preparation for the ultrasound physics credentialing exam.

CME Credit

This activity has been planned and implemented in accordance with the Essential Areas and Policies of the Accreditation Council for Continuing Medical Education (ACCME) through the joint sponsorship of the A. Webb Roberts Center for Continuing Medical Education of the Baylor Health Care System, Dallas and Pegasus Lectures, Inc.

The A. Webb Roberts Center for Continuing Medical Education of Baylor Health Care System, Dallas designates this educational activity for a maximum of 35 Category 1 credits toward the AMA Physician’s Recognition Award. Each physician should claim only those credits that he/she actually spent in the activity.

The A. Webb Roberts Center for Continuing Medical Education of Baylor Health Care System, Dallas is accredited by the ACCME to provide continuing medical education for physicians.

Faculty Disclosure

Frank Miele is the president of Pegasus Lectures, Inc. and owner of Miele Enterprises, LLC.

No unlabeled or investigational uses of a product or medical device are addressed in this CME activity.

Instructions

Participants must:
1. Read Volumes I & II of Ultrasound Physics and Instrumentation
2. Complete conceptual questions and exercises within Volumes I & II
 (Refer to study suggestions in Vol. II, Appendix M)
3. Complete the final exam and evaluation
Final Exam, Evaluation and Processing Fee

At the conclusion of this activity, participants must complete the final exam and the evaluation. A completed evaluation form must accompany the final exam. Please indicate on the evaluation form if you are applying for AMA/PRA Category 1 credit or SDMS CME credit and if you are a U.S. licensed physician or not. There is a $30 processing fee for AMA/PRA Category 1 credit. The check for AMA/PRA credit should be made payable to: A. Webb Roberts Center. Participants should send the original final exam for scoring (no copies accepted), the processing fee, the evaluation and any correspondence to:

Pegasus Lectures, Inc.
PO Box 157
Forney, TX 75126

Tel: 972-564-3056
Fax: 972-552-9186

NOTE: Participants must achieve a 75% pass rate on the final exam to be awarded AMA/PRA CME credit. Feedback on exam scores will be provided. A CME certificate will be mailed directly to the participant from the A. Webb Roberts Center for Continuing Medical Education of Baylor Health Care System, Dallas.

Date of Original Release: May 2001
Date of Most Recent Update: October 2005

Estimated time to complete the educational activity: 35 hours
This independent learning educational activity has been approved for 35.0 hours of SDMS CME credit. Each participant should claim only those hours of credit that he/she actually spent in the educational activity.

At the conclusion of this activity participants should complete the final exam and evaluation. A completed evaluation form must accompany the final exam. Please indicate on the evaluation form if you are applying for AMA/PRA Category 1 credit or SDMS CME credit. Participants should send the final exam, evaluation and any correspondence to:

Pegasus Lectures, Inc.
P.O. Box 157
Forney, TX 75126

Tel: 972-564-3056
Fax: 972-552-9186

Participants must achieve a 75% pass rate on the final exam to be awarded CME credit. A CME certificate will be mailed directly to the participant from Pegasus Lectures, Inc.
TABLE OF CONTENTS

VOLUME 1

CHAPTER 1 - Mathematics

Introduction .. 1

1. Mathematic Basics .. 3
 1.1 Numbers ... 3
 1.2 Basic Mathematical Notation (symbols used in basic mathematics) .. 3
 1.3 Basic Mathematical Definitions ... 4
 1.4 The Value of Estimating .. 4
 1.5 Exercises: Estimating .. 4

2. Fractions, Decimal Form, and Percentages ... 5
 2.1 Exercises: Fractions and Percentages .. 7

3. Reciprocals .. 7
 3.1 Exercises: Reciprocals ... 8

4. Units .. 8

5. Variables .. 9

6. Applying Reciprocals ... 10
 6.1 Exercises: Applying Reciprocals ... 11

7. Numbers Raised to a Power .. 12
 7.1 Positive Powers .. 12
 7.2 Exercises: Numbers to a Positive Power ... 13
 7.3 Numbers to a Negative Power ... 14
 7.4 Exercises: Numbers to a Negative and Positive Power .. 14
 7.5 Numbers to the Zero Power and Exponent Rules ... 15
 7.6 Exercises: Numbers to the Zero Power and Exponent Rules ... 16

8. Exponential Form (Notation) .. 17
 8.1 Exercises: Exponential Notations ... 18
 8.2 Deciding How to Write a Number ... 19
 8.3 Exercises: Deciding How to Write a Number ... 19

9. The Metric System and Metric Abbreviations .. 19
 9.1 Conversions for Metric and Non-metric Systems ... 19
 9.2 Metric Abbreviations ... 20
 9.3 Exercises: Metric Abbreviations .. 22
 9.4 Abbreviations: Physical Units ... 22
 9.5 Combining Abbreviations ... 23
 9.6 Exercises: Combining Abbreviations .. 24
 9.7 Reciprocals of Metric Units ... 24
 9.8 Exercises: Reciprocals of Metric Units .. 24
 9.9 Converting Between Metric Units ... 25
 9.10 Another Approach to Conversions (a more intuitive approach) .. 26
 9.11 Exercises: Conversions ... 28
 9.12 Exercises: Using Exponents .. 28

10. Proportionality and Inverse Proportionality ... 29
 10.1 Direct Proportionality .. 29
 10.2 Direct Linear (Simple) Proportionality ... 29
 10.3 Inverse (Simple) Proportionality ... 30
 10.4 Exercises: Proportionality and Inverse Proportionality .. 32
Table of Contents

1. The Motivation for Studying Waves .. 81
2. Waves .. 81
 2.1 Definition of a Wave .. 81
 2.2 Examples of Waves ... 82

CHAPTER 2 - Waves

Introduction .. 81
1. The Motivation for Studying Waves .. 81
2. Waves .. 81
 2.1 Definition of a Wave .. 81
 2.2 Examples of Waves ... 82

11. Distance Equation ... 33
 11.1 Exercises: Distance Equation ... 34

12. Math Terminology .. 35
 12.1 The Language of Mathematics: Translating English into Mathematics ... 35
 12.2 Mathematical Definition .. 35
 12.3 Exercises: Math Terminology ... 37

13. Distance Equation Revisited .. 39
 13.1 The Roundtrip Effect ... 39
 13.2 When the Propagation Velocity of 1540 m/sec is Incorrect 41
 13.3 Exercises: Distance Equation Revisited ... 42

14. Non-Linear Relationships .. 43
 14.1 Direct Non-Linear Proportionality .. 43
 14.2 Complex - Inverse Proportionality .. 44

15. Interpreting Relationships Within Linear and Non-Linear Equations .. 44
 15.1 Assessing an Equation and Expressing the Relative Relationship 44
 15.2 Exercises: Assessing an Equation .. 46
 15.3 Exercises: Proportionality ... 47

16. Dealing with Percentage Change .. 48
 16.1 Simple Calculations with Proportional Variables 48
 16.2 Calculations with Non-linearly Related Variables 49
 16.3 Rules for Dealing with Percentage Change .. 49
 16.4 Examples ... 49

17. Logarithms ... 51
 17.1 Properties of Logarithms .. 52
 17.2 Exercises: Logarithms ... 53

18. Trigonometry .. 53
 18.1 Angles, Quadrants and Signs ... 57
 18.2 The Value of Knowing Basic Trigonometry in Ultrasound (and Medicine) .. 58
 18.3 Exercises: Trigonometry .. 59

19. The Decimal System and the Binary System .. 61
 19.1 Decimal (Base 10) and Binary (Base 2) .. 61
 19.2 Exercises: Decimal Conversions .. 62
 19.3 Binary .. 62
 19.4 Converting from Binary to Base 10 ... 63
 19.5 Converting from Decimal to Binary ... 64
 19.6 Exercises: Binary ... 65

20. Analog to Digital (A/D) Conversion .. 66

21. Nyquist Criteria .. 71

22. Addition of Waves ... 76
 22.1 Constructive Interference (In Phase Waves) ... 76
 22.2 Destructive Interference (Out of Phase Waves) 77
 22.3 Partial Constructive (or Partially Destructive) Interference 77

Pegasus Lectures, Inc.
CHAPTER 3 - ATTENUATION

Introduction ... 143
1. Attenuation .. 143
2. Absorption ... 143
 2.1 Absorption and Viscosity .. 144
 2.2 Absorption and Frequency Dependence .. 144
3. Reflection ... 144
 3.1 Geometric Aspects of Reflection ... 144
 3.1.1 Defining Terms ... 144
 3.1.2 Specular Reflection .. 148
 3.1.3 (Back) Scattering ... 149
 3.1.4 Rayleigh Scattering .. 149
 3.2 Acoustic Aspects of Reflection .. 150
 3.2.1 Momentum Analogy ... 150
 3.2.2 Defining the Acoustic Impedance ... 150
 3.2.3 Impedance Mismatch Analogy .. 151
 3.2.4 Conservation of Energy .. 151
 3.2.5 Reflection Equation .. 151
 3.2.6 Transmission Equation .. 152
 3.2.7 Applying the Concept of Acoustic Impedance Mismatch .. 153
4. Refraction ... 153
 4.1 Refraction Defined ... 153
 4.2 Visualizing Refraction ... 153
 4.3 Oblique Incidence but No Change in Propagation Velocities .. 154
 4.4 Normal Incidence (Incident angle = 0 degrees) ... 155
 4.5 Snell’s Law .. 156
 4.5.1 The Equation ... 156
 4.5.2 Determining Degrees of Refraction from the Transmission Angle 157
 4.6 The Critical Angle ... 158
5. Conceptual Questions .. 159
6. Ultrasound Terminology .. 160
 6.1 Echogenicity .. 160
 6.2 Uniformity ... 161
 6.3 Plaque Surface Characteristics ... 162
7. Attenuation Rates .. 162
 7.1 Table of Attenuation Rates .. 162
 7.2 Calculating Approximate Attenuation .. 162
 7.3 Interpreting Calculated Attenuation .. 163
8. Absorption in the Body ... 163
 8.1 In Soft Tissue, Absorption is the Dominant Factor Creating Attenuation 163
 8.2 Absorption Increases Exponentially with Increasing Frequency .. 164
 8.3 Fluids and Absorption ... 164
9. Reflection in the Body Based on Geometric Conditions .. 164
 9.1 Specular Reflection ... 164
 9.1.1 Examples of Specular Reflectors .. 165
 9.1.2 Specular Reflection the Principal Source of Imaging Artifacts 166
 9.1.3 Identifying Specular Reflection Based Artifacts (Step-by-Step) 167
 9.2 Scattering in the Body .. 168
 9.2.1 Speckle and “Tissue Texture” .. 168
CHAPTER 5 - Transducers

Introduction .. 233
1. Transducer Basics .. 233
 1.1 Transducers Defined ... 233
 1.2 Examples of Transducers ... 234
 1.3 Ultrasound Transducers and Bi-directionality .. 234
2. Ultrasound Transducers and the Piezoelectric Effect ... 234
 2.1 The Piezoelectric Effect ... 234
 2.2 The Piezoelectric Mechanism .. 235
 2.3 Natural Piezoelectric Materials .. 236
 2.4 Manufactured Piezoelectric Materials .. 236
 2.5 Poling ... 236
 2.6 Curie Point .. 237
3. Frequency of Operation and Crystal Dimension ... 237
 3.1 Pulse Wave ... 237
 3.2 Continuous Wave .. 239
4. Impulse Response of a Transducer .. 240
5. Beam Characteristics with a Simple, Single Disc Transducer ... 240
 5.1 Simple, Single, Disc Transducers .. 240
 5.1.1 Physical Dimensions of the Crystal ... 240
 5.1.2 The Beamshape ... 241
 5.2 The Beam Parameters ... 243
 5.2.1 Depth (axial, longitudinal, radial, axial) ... 243
 5.2.2 Beamwidth: Lateral (azimuthal, side-by-side, transverse, angular) 243
 5.3 The Natural Focus ... 243
 5.4 Varying the depth of the Natural Focus ... 244
6. Limitations of the Simple Crystal .. 244
7. Minimizing the Acoustic Impedance Mismatch ... 245
 7.1 High Impedance Piezoceramics ... 245
 7.2 Matching Layer ... 245
 7.3 Quarter Wavelength Thickness .. 246
 7.4 Composites with Lower Acoustic Impedances .. 246
8. Axial Resolution and Backing Material .. 247
 8.1 Axial Resolution ... 247
 8.2 Backing Material ... 247
9. Lateral Resolution ... 248
 9.1 Equation ... 248
 9.2 Changing the Focus ... 249
 9.2.1 Lenses ... 249
 9.2.2 Curved Surface ... 250
 9.2.3 Diffraction Limiting ... 250
10. Simple Block Diagram Model of a Transducer .. 250
11. Exercises .. 251
12. Beam Dimensions Revisited ... 252
 12.1 Depth of Focus (Focal depth) and Equation .. 252
 12.1.1 Equation ... 252
 12.1.2 Using the Modified Equation .. 253
Table of Contents

12.1.3 Effect of Aperture on NZL .. 253
12.1.4 Effect of Frequency on NZL .. 254
12.2 Depth of Field (focal region) .. 255
12.3 True Beam Shapes ... 255
12.4 Changing Intensity from Beam Convergence and Divergence 256

13. Transducer Evolution Overview .. 257
14. Imaging Dimensions ... 258

15. ... The Pedof (Blind, Doppler Only Transducer) 259

16. Sequencing .. 260
17. Linear Switched Array ... 261
18. Mechanically Steered ... 262
19. Mechanical Annular Array .. 265

20. Electronic Steering .. 267
 20.1 Understanding the Term Phase .. 267
 20.2 Electronic Steering for Transmit ... 268
 20.3 Electronic Steering for Receive ... 269
 20.4 Electronic Focusing for Transmit .. 270
 20.5 Electronic Focusing for Receive .. 271
 20.6 Focusing and Steering Together .. 271

21. Phased Array Sector .. 272

22. ... Linear Phased Array 275

23. Curved Linear Phased Array ... 280

24. ... Multi-dimensional Arrays 281
 24.1 1.5-D Arrays ... 281
 24.2 2-D Arrays ... 282

25. Piezocomposite Materials .. 282

26. Detail Resolution ... 283
 26.1 Lateral Resolution .. 283
 26.2 Elevation Resolution ... 284
 26.3 Axial Resolution ... 285

27. ... Important Concepts for Transducers 285

28. Exercises .. 287
29. Conceptual Questions ... 290
30. The Piezoelectric Effect .. 294
 30.1 Use of Piezoelectric Materials .. 294
 30.2 Crystal Structures .. 294
 30.3 Intermolecular Bonds .. 294
 30.4 Polarization .. 295

CHAPTER 6 - System Operation

Introduction ... 301

1. The Basic Processes of Real-Time Imaging ... 301
2. Important System Definitions ... 302
 2.1 Transmit Power .. 302
 2.2 Dynamic Range .. 303
Table of Contents

2.3 Signals, Noise, and Signal-to-Noise Ratio (SNR) ... 303
 2.3.1 Definitions .. 303
 2.3.2 What Determines a Good SNR .. 303
 2.3.3 Apparent SNR, Gain, and True SNR .. 304
 2.3.4 Relating SNR, Noise Floor, and Apparent SNR Ultrasound Images 305
 2.3.5 Sources of Noise ... 307
 2.3.6 Clutter One Moment May Be Signal the Next ... 307
 2.4 Preprocessing and Post Processing .. 308
 2.4.1 Conventional Definitions ... 308
 2.4.2 Changes in the Preprocessing and Post Processing Paradigm 308
 3. Basic Functions of a System (Simplified) ... 308
 3.1 Putting the Pieces Together ... 309
 4. Transmitter (Pulser – Transmit Beamformer) ... 309
 4.1 Function ... 309
 4.2 The System Control for Transmit Power ... 310
 4.3 Practical Concerns .. 310
 5. Receiver ... 310
 5.1 Amplification (Receiver Gain) .. 310
 5.1.1 Need for Amplification .. 310
 5.1.2 Amplification of the RF Signal ... 311
 5.1.3 The System Control ... 312
 5.2 Compensation (Time Gain Compensation) ... 313
 5.2.1 The Role of TGC ... 313
 5.2.2 Compensation of the RF Signal .. 313
 5.2.3 The Relationship Between TGCs and Receiver Gain .. 313
 5.2.4 Depth and TGC Zones ... 314
 5.3 Compression .. 315
 5.3.1 Dynamic Range .. 315
 5.3.2 Compression and Dynamic Range .. 315
 5.3.3 Effects of Compression and Information Loss .. 316
 5.3.4 Compression of the RF Signal ... 316
 5.4 Demodulation .. 318
 5.4.1 Modulation and Demodulation .. 318
 5.4.2 Rectification .. 318
 5.4.3 Envelope Detection (Smoothing) ... 318
 5.4.4 The Detected Signal and A-Mode .. 319
 5.5 Reject ... 320
 6. A-mode (Amplitude mode) .. 320
 6.1 A-mode Display .. 320
 6.2 Interpreting an A-mode ... 321
 6.3 The Use of A-mode .. 321
 7. Exercises ... 322
 8. System Block Diagram .. 323
 9. Controls that Affect Transmit and Power Distribution .. 324
 9.1 Transducer Frequency and Transmit Power .. 324
 9.2 Imaging Modalities and Image Size Transmit Power .. 324
 9.3 Imaging Depth and Transmit Power ... 324
 9.4 Focus and Transmit Power .. 324
 10. TGC and Gain Revisited .. 326
Table of Contents

10.1 Internal TGC Profiles ..326
10.2 Internal Color TGC Profiles ..327
10.3 “Pre-compensated” TGC Profiles ..327
10.4 TGCs and Imaging Scenarios ..328

11. Analog to Digital Conversion ..331
11.1 Front End and Back End of an Ultrasound System ...331
11.2 Role of the Beamformer ...331
11.3 Analog Received Signal and Digital Output to Back End ..331
11.4 The Motivation for Converting from Analog to Digital ..332

12. Scan Conversion ..332
12.1 Paradigm Shift: From A-mode to B-mode ...332
12.2 Creating a B-mode From an A-mode ...333
12.3 The Role of the Scan Converter ..335
12.4 Polar Scan Conversion and Lateral Distortion ..335
12.5 Inconsistent Terminology in the Field ...336

13. Preprocessing and Post Processing Revisited ...336
13.1 Understanding the Difference ...336

14. Compression ...337
14.1 Compression: A Multi-Stage Process ...337
14.2 Dynamic Range of 2-D Echoes ...337
14.3 Dynamic Range of the Human Eye ..338
14.4 Why the System Allows for Compression in the Back End of the System339
14.5 Compression Controls on the System ...340
14.6 Using Compression Controls Correctly ...342

15. Tissue Colorization ...343

16. Measurements ..344
16.1 Area Measurements ..344
16.1.1 Tracing an Area ...344
16.1.2 Calculated From the Radius ..345

17. Video Display and Monitors ...346
17.1 CRT ...346
17.2 Monitor Formats and “Standards” ..346
17.2.1 NTSC (United States) Format ..347
17.2.2 PAL ..347
17.2.3 SECAM ..347
17.3 Why the Monitor Frame Rate Matters ...348
17.4 Non-Interlaced Monitors ..348
17.5 Subdividing Horizontal Lines into Pixels ...349
17.5.1 Pixels and Brightness Levels ..349
17.6 Relating Brightness Levels to Binary ...350
17.7 Brightness Levels and Ambient Light ...351

18. Data Storage Devices (External) ..352
18.1 Disadvantages of Analog Storage Devices ...352
18.2 VHS and SVHS (VCR) ...353
18.3 Disadvantages of Digital Storage Devices ...353
18.3.1 Digital Storage Advantages ...353
18.3.2 Digital Storage Disadvantages ..353

19. Data Storage (Internal) ..353
19.1 Cine (Cineloop) Review ..353
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>33. Compression Algorithms and Techniques</td>
<td>383</td>
</tr>
<tr>
<td>33.1 Truncation</td>
<td>383</td>
</tr>
<tr>
<td>33.2 Run Length Encoding (RLE)</td>
<td>383</td>
</tr>
<tr>
<td>33.3 Indexing (Lookup Table)</td>
<td>384</td>
</tr>
<tr>
<td>33.4 Spatial Interpolation</td>
<td>384</td>
</tr>
<tr>
<td>33.5 Temporal Interpolation</td>
<td>385</td>
</tr>
<tr>
<td>33.6 Mathematical Transforms</td>
<td>385</td>
</tr>
<tr>
<td>33.7 Statistical Approaches</td>
<td>385</td>
</tr>
<tr>
<td>33.8 Motion Detection</td>
<td>386</td>
</tr>
<tr>
<td>33.9 Combining Algorithms</td>
<td>386</td>
</tr>
<tr>
<td>34. Digital to Digital Format Conversion</td>
<td>386</td>
</tr>
<tr>
<td>34.1 Multiple (Iterative) Compressions</td>
<td>386</td>
</tr>
<tr>
<td>34.2 An “Idealized” Controlled Test</td>
<td>387</td>
</tr>
<tr>
<td>34.3 A “Closer to Real World” Controlled Test</td>
<td>388</td>
</tr>
<tr>
<td>35. DICOM</td>
<td>389</td>
</tr>
<tr>
<td>36. Analog Versus Digital Systems</td>
<td>389</td>
</tr>
<tr>
<td>APPENDIX A - Supplemental Exercises</td>
<td>395</td>
</tr>
<tr>
<td>APPENDIX B - Answers to Chapter Exercises</td>
<td>419</td>
</tr>
<tr>
<td>APPENDIX C - Answers to Supplemental Exercises</td>
<td>469</td>
</tr>
<tr>
<td>APPENDIX D - Resource Information</td>
<td>499</td>
</tr>
<tr>
<td>APPENDIX E - Index</td>
<td>503</td>
</tr>
<tr>
<td>APPENDIX F - Abbreviations and Physical Units</td>
<td>511</td>
</tr>
<tr>
<td>APPENDIX G - Equations</td>
<td>513</td>
</tr>
<tr>
<td>APPENDIX H - Additional Information About Pegasus Lectures</td>
<td>517</td>
</tr>
</tbody>
</table>
CHAPTER 7 - Doppler

Introduction ... 519
1. The Doppler Effect .. 519
 1.1 Change in Frequency ... 519
 1.2 The Doppler Thought Experiment .. 520
 1.3 The Relationship Between Velocity (v) and the Doppler Shift .. 523
 1.4 Wavelength (λ) and the Doppler Effect ... 523
 1.5 Relative Motion ... 523
 1.6 The Relative Shift .. 523
 1.7 Determining the Relative Doppler Shift Numerically ... 524
 1.8 Exercises ... 524
2. Relationships in the Doppler Equation .. 526
 2.1 Velocity (v) and Wavelength (λ) .. 526
 2.2 Wavelength (λ) and the Transmit Frequency (Operating Frequency f0) 526
 2.3 Wavelength (λ) and the Propagation Velocity (c) .. 527
 2.4 Roundtrip Effect .. 528
3. A Simplified Doppler Equation .. 528
 3.1 Equation with No Angle Effects .. 528
 3.2 Simplified Numeric Form ... 529
 3.3 Examples of Doppler Relations Applied .. 529
4. Solving the Doppler Equation for Velocity .. 530
5. Conceptual Questions ... 531
6. Completing the Doppler Equation .. 532
 6.1 Removing the “Directly Toward or Directly Away” Assumption 532
 6.2 Relative Motion and Angle .. 532
7. Doppler Shifts from Red Blood Cells .. 534
 7.1 The Rayleigh Scattering/Frequency Paradox .. 534
 7.2 The Optimal Frequency for Doppler ... 534
 7.3 Red Blood Cell Aggregation and Reflectivity ... 535
 7.4 Rouleau and Spontaneous Contrast .. 535
8. Identifying the Doppler Angle (Insonification or Insonation Angle) 536
 8.1 Standardized Angle Determination ... 536
 8.2 Examples of Insonification Angles ... 536
 8.2.1 Reviewing the Cosine .. 536
9. Exercises ... 539
10. Spectral Doppler System Operation .. 540
 10.1 The Value of a Block Diagram ... 540
 10.2 Why You Need to Also Know About Analog Waveform and Unidirectional Doppler 540
 10.3 The Doppler Block Diagram ... 541
11. The Processes Involved in Spectral Doppler .. 541
 11.1 Transmit Ultrasound Into the Body: (Pulser) ... 541
 11.2 Frequency Shift from Moving Blood ... 542
 11.3 Amplification: (Amplifier) ... 543
 11.4 Doppler Shift Detection: (Mixers) .. 543
 11.5 Wall Filtering ... 544
 11.5.1 Dynamic Range of Doppler .. 544
 11.5.2 Clutter Signals ... 545
 11.5.3 Graphic Depiction of Dynamic Range Issues ... 545
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.5.4 Wall Filter Theory</td>
<td>545</td>
</tr>
<tr>
<td>11.5.5 Graphic Depiction of Wall Filters</td>
<td>546</td>
</tr>
<tr>
<td>11.5.6 Effects of Wall Filters</td>
<td>546</td>
</tr>
<tr>
<td>11.5.7 Wall Filter Appearance on Doppler Spectrum</td>
<td>547</td>
</tr>
<tr>
<td>11.5.8 Appropriate Wall Filter Settings for Various Clinical Applications</td>
<td>548</td>
</tr>
<tr>
<td>11.5.9 Effect of Operating Frequency on Wall Filter Settings</td>
<td>548</td>
</tr>
<tr>
<td>11.5.10 Saturation of Wall Filters</td>
<td>548</td>
</tr>
<tr>
<td>11.6 Variable Gain (Gain)</td>
<td>549</td>
</tr>
<tr>
<td>11.7 Audio (speakers)</td>
<td>549</td>
</tr>
<tr>
<td>11.8 Analog to Digital Conversion (A/D)</td>
<td>550</td>
</tr>
<tr>
<td>11.9 Fast Fourier Transform (FFT)</td>
<td>550</td>
</tr>
<tr>
<td>11.10 Post-processing (Compression and Reject or Grayscale)</td>
<td>551</td>
</tr>
<tr>
<td>11.11 Display</td>
<td>551</td>
</tr>
<tr>
<td>12. Frequency vs. Amplitude</td>
<td>552</td>
</tr>
<tr>
<td>13. PW vs. CW Comparison</td>
<td>553</td>
</tr>
<tr>
<td>13.1 Trade-offs</td>
<td>553</td>
</tr>
<tr>
<td>13.2 Timing and Basics of CW Doppler</td>
<td>553</td>
</tr>
<tr>
<td>13.3 Timing and Basics of PW Doppler</td>
<td>553</td>
</tr>
<tr>
<td>13.4 Range Specificity: Advantage PW</td>
<td>553</td>
</tr>
<tr>
<td>13.5 Aliasing: Advantage CW</td>
<td>554</td>
</tr>
<tr>
<td>13.6 The Maximum Detectable Frequency Shift (PW)</td>
<td>555</td>
</tr>
<tr>
<td>13.7 Parameters Affecting Aliasing in PW Doppler</td>
<td>555</td>
</tr>
<tr>
<td>13.8 Appearance of Aliasing in a Doppler Spectrum</td>
<td>555</td>
</tr>
<tr>
<td>13.9 Practical Limit in CW Doppler and Aliasing</td>
<td>556</td>
</tr>
<tr>
<td>13.10 Changing the Scale in PW Doppler</td>
<td>557</td>
</tr>
<tr>
<td>14. The Maximum Detectable Velocity</td>
<td>559</td>
</tr>
<tr>
<td>15. The Presence of a Spectral Window</td>
<td>560</td>
</tr>
<tr>
<td>16. PW Versus CW Comparison</td>
<td>562</td>
</tr>
<tr>
<td>17. PW Range Ambiguity</td>
<td>562</td>
</tr>
<tr>
<td>17.1 Dispelling the Myth</td>
<td>562</td>
</tr>
<tr>
<td>17.2 The Mechanism that Causes Range Ambiguity</td>
<td>563</td>
</tr>
<tr>
<td>17.3 Important Questions about Range Ambiguity and Mitigating Factors</td>
<td>563</td>
</tr>
<tr>
<td>17.4 Risk Factors</td>
<td>564</td>
</tr>
<tr>
<td>17.5 Determining if Range Ambiguity is Present</td>
<td>564</td>
</tr>
<tr>
<td>18. HPRF Doppler</td>
<td>564</td>
</tr>
<tr>
<td>18.1 Using the Trade-offs</td>
<td>564</td>
</tr>
<tr>
<td>18.2 Using Range Ambiguity to Create HPRF Doppler</td>
<td>564</td>
</tr>
<tr>
<td>19. Doppler Insonification Angle and Error Sources</td>
<td>565</td>
</tr>
<tr>
<td>19.1 Cardiac and Alignment with Flow</td>
<td>565</td>
</tr>
<tr>
<td>19.2 Vascular Doppler and the Need to Angle Correct</td>
<td>566</td>
</tr>
<tr>
<td>19.3 Review of the Cosine</td>
<td>567</td>
</tr>
<tr>
<td>19.4 Peak Velocity and Pressure Gradient</td>
<td>567</td>
</tr>
<tr>
<td>19.5 Angle Correction Error (5 Degree Table)</td>
<td>567</td>
</tr>
<tr>
<td>20. Color Flow</td>
<td>569</td>
</tr>
<tr>
<td>21. Color Doppler Versus Spectral Doppler</td>
<td>569</td>
</tr>
<tr>
<td>22. Overview of How Color Doppler is Performed</td>
<td>570</td>
</tr>
<tr>
<td>22.1 Similarities of Color to Spectral Doppler and 2-D Imaging</td>
<td>570</td>
</tr>
<tr>
<td>22.2 Creating the Color Scan</td>
<td>570</td>
</tr>
<tr>
<td>22.3 Temporal Resolution and Color</td>
<td>571</td>
</tr>
</tbody>
</table>
CHAPTER 9 - Bioeffects

Overview...621
1. Mechanisms of Bioeffects ..622
 1.1 Thermal Bioeffects ..622
 1.2 Mechanical Bioeffects ..622
 1.2.1 Stable Cavitation ...622
 1.2.2 Inertial Transient Cavitation ..623
 1.3 The Concept of a Threshold Effect ..623
2. The Desire to Safeguard the Patient ..624
 2.1 Confirming Safe Levels ..624
3. Research and Standards ...625
4. Power Measurements as a Basis for Gauging the Risk of Bioeffects ...626
5. Common Intensities ...626
 5.1 Pulsed Wave Timing Revisited ..626
 5.2 The Common Intensities ..627
 5.3 Deciphering the Common Intensities by Concepts ..627
 5.4 Putting the Concepts Together ...629
6. The Significance of the Common Intensities ...630
 6.1 Common Intensity Analogy ..630
 6.2 Mechanical Bioeffects and the ISPPA ...631
 6.3 Thermal Bioeffects and the ISPTA ..631
 6.4 Conversion Between a PA and a TA intensity: (Duty Factor) ..631
 6.5 Conversion Between SP and SA Intensity: (BUF) ..632
 6.5.1 The Beam Uniformity Factor (BUF) ...632
 6.5.2 Converting between the SA and the SP ..632
7. Exercises..633
8. Relating Risks of Bioeffects to Ultrasound Modes ..634
 8.1 Scanned Versus Non-scanned Modalities ...634
 8.2 Ultrasound Modalities in Order of Thermal Risks ..634
CHAPTER 10 - Contrast and Harmonics

1. Motivation for Contrast Imaging .. 659
 1.1 Overcoming Too Much Attenuation .. 659
 1.2 Conventional Approaches .. 659
 1.3 Increasing the Acoustic Impedance Mismatch .. 659
 1.4 Increase in Signal Amplitude with Contrast ... 660

2. Fundamentals of Harmonics .. 660
 2.1 Motivation for Harmonic Imaging .. 660
 2.2 Mechanisms that Produce Harmonic Signals ... 661
1.2 Commitment to Quality ..691
1.3 The Individual Certification ..692
1.4 Personnel Qualifications ..692
1.5 Document Storage and Record Keeping ..694
1.6 Instrumentation and Quality Assurance ..694
2. Equipment Testing ..695
2.1 The Need for Tight Testing Controls ..695
2.2 Purpose of Testing ..695
3. 2-D and Doppler Testing ..695
3.1 Tested Parameters ..695
4. Doppler Testing and Phantoms ...696
4.1 Types of Doppler Phantoms ..696
4.2 Flow Phantoms ...697
4.2.1 Basic Design ...697
4.2.2 Blood Mimicking Fluids ..697
4.2.3 Other Potential Issues ...698
4.2.4 Example of Flow Phantoms ...698
4.3 Non-flow Phantoms ...702
4.3.1 Eliminating Variable Reflectivity ...702
4.3.2 String Phantoms (Moving Targets) ...702
4.3.3 Blossoming ...702
4.3.4 Need to Use Much Lower Gains and Transmit Power ...703
5. Imaging Phantoms and Test Objects ..706
5.1 Detecting Performance Degradation ..706
5.2 Test Repeatability ...707
5.3 Testing Detail Resolution ...707
6. Commercially Available Imaging Phantoms ..708
7. Conceptual Questions ...720
8. Quality Assurance Statistics ..720
8.1 As Part of the Quality Program ..720
9. Q&A Statistics ..721
9.1 The Values of Statistics: ...721
9.2 What is a Statistical Testing? ..721
10.1 Presume that the Gold Standard is Perfect, *Adhering to the “Golden” Rule.722
 10.1.1 The Golden Rule: ...722
 10.1.2 The Meaning of the Words “True” and “False” with Respect to the Golden Rule722
10.2 Pay Particular Attention to the English of the Statistical Terminology.722
 10.2.1 The Meaning of the Words “Positive” and “Negative” ..723
 10.2.2 The Meaning of the Words “Positive” and “Negative” ..723
11. Building the Table of Data ...723
12. Exercises: Interpreting the Statistical Table ..726
13. Statistical Parameters ..726
13.1 Sensitivity ...727
13.2 Specificity ..727
13.3 Accuracy ...727
13.4 Positive Predictive Value ...727
13.5 Negative Predictive Value ..727
14. Numerical Example ...728
CHAPTER 12 - Fluid Dynamics

1. Flow Analogy ... 733
 1.1 Foreword on Flow ... 733
 1.2 Flow Analogy ... 733
 1.3 Flow Analogy Exercises ... 734

2. Fluid Dynamics ... 737
 2.1 Fluid Dynamics: Flow and Related Terms ... 737
 2.2 Fluid Dynamics: Definitions ... 737
 2.3 Power, Work and Energy in Practical Terms .. 739
 2.4 Energy .. 740
 2.5 Potential and Kinetic Energy .. 741
 2.6 Hydrostatic Pressure .. 742
 2.7 Volumetric Flow (Q) .. 743
 2.8 Velocity (v) .. 744
 2.9 Capacitance .. 744
 2.9.1 Capacitance Defined .. 744
 2.9.2 Understanding the Capacitance ... 744
 2.10 Compliance .. 745
 2.11 Fluid Viscosity ... 746
 2.12 Exercises: Flow and Related Definitions .. 746

3. Derivation of Equations ... 747
 3.1 Introduction .. 747
 3.2 The Resistance Equation .. 748
 3.3 Volumetric Flow (continuity equation) ... 751
 3.4 Simplified Law of Hemodynamics ... 752
 3.5 Poiseuille’s Law .. 754
 3.6 Simplifications Made for the Equation ... 754

4. Bernoulli’s Equation and Energy ... 755
 4.1 Conservation of Energy and an Apparent Contradiction .. 755
 4.2 Bernoulli’s Equation (simplified) .. 755
 4.3 Simplified Bernoulli and Modified Simplified Bernoulli Equation ... 758
 4.4 Bernoulli’s Equation with Hydrostatic Pressure Term ... 758
 4.5 Bernoulli’s Equation Heat Term .. 759
 4.6 Understanding Bernoulli’s Equation (An Airfoil and Lift) ... 759

5. Basics of Flow and Flow Diagrams ... 761
 5.1 Simplifications and Assumptions for These Equations to be Employed 761
 5.2 Flow Definitions .. 761
 5.3 Steady Flow Diagram in a Rigid Tube ... 762
 5.4 Steady State Flow in a Curved Vessel ... 763
 5.5 Flow Examples ... 764

6. Reynold’s Number and Turbulence ... 767
 6.1 Reynold’s Number ... 767

7. Exercises ... 770

CHAPTER 13 - Hemodynamics

Introduction ... 775
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Removing Some of the Simplifications</td>
<td>775</td>
</tr>
<tr>
<td>1.1</td>
<td>The Assumption: Steady State Flow</td>
<td>776</td>
</tr>
<tr>
<td>2</td>
<td>The Assumption: Rigid Flow Conduits</td>
<td>776</td>
</tr>
<tr>
<td>2.1</td>
<td>Elastic Arteries</td>
<td>776</td>
</tr>
<tr>
<td>2.2</td>
<td>The Impact on Poiseuille's Law</td>
<td>776</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Compliance</td>
<td>777</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Pressure Volume Relationship of a Compliant Vessel</td>
<td>778</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Pressure Volume Relationship of an Incompliant Vessel</td>
<td>778</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Elastic Veins</td>
<td>779</td>
</tr>
<tr>
<td>2.3</td>
<td>The Assumption: Single Flow Conduit</td>
<td>779</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Regulation of Flow</td>
<td>779</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Multiple Vessels: Series and Parallel Combinations</td>
<td>780</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Series Combinations</td>
<td>780</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Parallel Combinations</td>
<td>780</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Combinations and Effective Resistance</td>
<td>781</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Extrapolating these Results to Complex Networks</td>
<td>783</td>
</tr>
<tr>
<td>2.4</td>
<td>The Assumption: Conservation of Energy and No Energy Loss to Heat</td>
<td>784</td>
</tr>
<tr>
<td>2.4.1</td>
<td>General Heat Loss</td>
<td>784</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Impact on Bernoulli's Equation and Calculating Pressure Gradients</td>
<td>784</td>
</tr>
<tr>
<td>2.4.3</td>
<td>The Assumption: Smooth Straight Vessels</td>
<td>784</td>
</tr>
<tr>
<td>2.4.4</td>
<td>The Assumption: Large Vessels</td>
<td>785</td>
</tr>
<tr>
<td>2.4.5</td>
<td>The Assumption: Newtonian Fluid (and Blood Viscosity)</td>
<td>788</td>
</tr>
<tr>
<td>2.4.6</td>
<td>The Assumption: No Turbulence (and Reynold's Number)</td>
<td>788</td>
</tr>
<tr>
<td>3</td>
<td>Pressure, Flow, and Resistance in the Cardiovascular System (The Simplified Law)</td>
<td>788</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>788</td>
</tr>
<tr>
<td>3.2</td>
<td>Left Heart</td>
<td>789</td>
</tr>
<tr>
<td>3.3</td>
<td>The Arterial System</td>
<td>790</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Flow and Pressure in the Aorta</td>
<td>790</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Arterial Vessel Sizes</td>
<td>790</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Resistance in the Arterial System</td>
<td>791</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Volumetric Demand and Vascular Bed Resistance</td>
<td>791</td>
</tr>
<tr>
<td>3.3.5</td>
<td>Effective Resistances in the Arterial System</td>
<td>791</td>
</tr>
<tr>
<td>3.3.6</td>
<td>Flow and Pressure in the Arteries</td>
<td>792</td>
</tr>
<tr>
<td>3.3.7</td>
<td>Flow and Pressure in the Arterioles</td>
<td>792</td>
</tr>
<tr>
<td>3.3.8</td>
<td>Flow and Pressure in the Capillaries</td>
<td>792</td>
</tr>
<tr>
<td>3.4</td>
<td>Venous System</td>
<td>793</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Relative Vessel Sizes</td>
<td>793</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Resistance of the Venules</td>
<td>793</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Resistance of the Veins and the Vena Cava</td>
<td>793</td>
</tr>
<tr>
<td>3.5</td>
<td>Right Heart</td>
<td>793</td>
</tr>
<tr>
<td>3.6</td>
<td>The Lungs</td>
<td>794</td>
</tr>
<tr>
<td>3.7</td>
<td>Return to the Left-Sided Heart</td>
<td>794</td>
</tr>
<tr>
<td>4</td>
<td>The Healthy Cardiovascular System as a Whole</td>
<td>794</td>
</tr>
<tr>
<td>4.1</td>
<td>Velocity Versus Cross-Sectional Area</td>
<td>794</td>
</tr>
<tr>
<td>4.2</td>
<td>Pressure Changes Across the Arterial System</td>
<td>795</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Overview</td>
<td>795</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Increasing Pulse Pressure</td>
<td>796</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Decrease in Pulsatility and Pressure Drop</td>
<td>796</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Pressure Drop Across the Capillaries</td>
<td>797</td>
</tr>
</tbody>
</table>
4.2.5 Pressures in the Venous Side are Low ...797
4.3 The Venous System ...797
4.3.1 Dichotomizing the Cardiovascular System ..797
4.3.2 Venous Pressure ..797
4.3.3 Venous Capacitance and Circulatory Pressure ...798
4.3.4 Hydrostatic Pressure ..798
4.3.5 The Calf Muscle Pump ..799
4.3.6 Respiration Related Changes ..800
4.3.7 Venous Resistance and Transmural Pressure ..801
4.3.8 When Things Go Wrong: Effects of Edema ..802

5. The Subcritical Diseased Cardiovascular System at Rest803
5.1 Asymptomatic Patients ...803
5.2 Asymptomatic Patients with Exercise (Unmasking a Subcritical Stenosis)805
5.3 Symptomatic Patients and Critical Stenoses ..807

6. Spectral Doppler as a Means of Assessing Hemodynamics808
6.1 What Doppler Tells Us ...808
6.2 Returning to the Hemodynamic Equations ..809
6.3 Characteristics of the Spectrum ..809
6.3.1 Systolic Acceleration and Pressure ...809
6.3.1.1 Doppler Acceleration for a Healthy Large Vessel ...809
6.3.1.2 Doppler Risetime for a Diseased Vessel ...810
6.3.2 The Spectral Window ...811
6.3.2.1 Presence in Healthy Vessel ...811
6.3.2.2 Absence in Diseased Vessel ..811
6.3.2.3 Absence of the Spectral Window in a Healthy Vessel812
6.3.3 Systolic Acceleration and Velocity Distribution ...812
6.3.4 Flow Reversal and Phasicity ..813
6.3.4.1 Normal Flow Reversal ...813
6.3.4.2 Abnormal Flow Reversal ..814
6.3.4.3 Arterial Signal Components ...815
6.4 Velocity Criteria ..815
6.4.1 Peak Velocity ..816
6.4.2 Mean Velocity ...816
6.5 Doppler Indices and Ratios ..816
6.5.1 General ..816
6.5.2 Doppler Indices Defined ..817
6.5.3 Interpreting the Doppler indices ...817
6.5.4 Angle independence of the Doppler indices ..817
6.6 Murmurs and Bruits ...818
6.6.1 Murmurs ..818
6.6.2 A Doppler Bruit ...818
6.6.3 Harmonic Bruit ..819
6.6.4 Fluttering ...819

7. Flow Visualization ...820

APPENDIX A: Vascular Principals
Introduction ..825
1. Electrical Principles ...825
 1.1 Ohm’s Law ...825
1.2 Power...826
1.3 Why Electrical Principles Matter to Vascular Principles...827
2. Relating Electrical Signals to Physical Parameters..827
 2.1 Information Display..827
 2.1.1 The Cathode Ray Tube (CRT)...827
 2.1.2 Strip Chart...827
 2.1.3 Calibration of a strip chart..828
3. Two-Wire vs. Four-Wire Measurements and Calibration ...828
 3.1 AC vs. DC Coupling...829
 3.1.1 AC (alternating current)..829
 3.1.2 Direct Current...829
 3.1.3 Choosing the Appropriate Coupling for Indirect Arterial and Venous Testing.........................830
4. Plethysmography..831
 4.1 Displacement (pneumatic cuff) Plethysmography..831
 4.2 Strain-gauge Plethysmography...831
 4.3 Impedance Plethysmography (IPG)..831
 4.4 Inflow and Outflow Studies ..832
 4.4.1 Venous Capacitance/Venous Outflow (VO/VC)..832
 4.5 Photoplethysmography...833
 4.5.1 Venous Reflux Testing...833
 4.5.2 Arterial Testing with Photoplethysmography..835
5. Pressure Measurements..837
 5.1 Methods of Pressure Measurements..837
 5.1.1 Palpatory method..837
 5.1.2 Auscultatory method...837
 5.1.3 Flow Meter (Doppler)..838
 5.2 The Correct Cuff Size..838
6. Arterial Pressure Measurements...839
 6.1 Lower Extremity Segmental Pressures...839
 6.2 Upper Extremity Arterial Pressures..841
7. Reactive Hyperemia...842
8. Skin Temperature and Skin Changes..842
9. Occlusion Pressures...843
10. Oculoplethysmography (OPG) ..843
11. Miscellaneous...845
 11.1 Arteriovenous Fistula...845
 11.2 Autogenous Arteriovenous Fistulae..845
 11.3 Pseudoaneurysm...845
12. Transcutaneous Oximetry..845
13. Transcranial Doppler..846
 13.1 General...846
 13.2 Identifying Vessels..847
 13.3 Technical Limitations:..848

APPENDIX B: Cardiovascular Principals

Introduction...849
1. The Circulatory System...849
 1.1 Pulmonary vs. Systemic Circulatory Components...850
 1.2 Pulmonary vs. Systemic Circulation..850
Introduction

Without math, it is not possible to learn physics. Math is to physics what a paintbrush is to a painter or physical conditioning is to an athlete. The foundation of physics is mathematics. Therefore, to understand physics, and not just memorize facts, you must have at least a rudimentary understanding of mathematics.

Types of Math

Most people think of mathematics in terms of basic arithmetic and numerical manipulation. Whereas, this is certainly true, it is a very narrow view of mathematics. Mathematics is really an enormous field that includes many different topics. The field of mathematics includes many disciplines such as algebra, number theory, geometry, calculus, trigonometry, topology, and even logic and reasoning. Although you will not need to become an expert in any of these disciplines, the more you learn in mathematics, the easier it will be to understand physics.

How Much Math Will You Need?

Many people in the field of ultrasound will state that there is very little mathematics on the board exams. I do not agree. I think this disparity in opinions stems from the very narrow definition of mathematics as numerical calculations. It is true that there are very few numerical calculations on most of the credentialing exams, and certainly never such intensive calculations such that one would require a calculator. However, depending on the specific credentialing test and the test version, there are approximately twenty-five to forty percent of the questions that involve some form of mathematics.

As you will discover throughout this book, the mathematics included on the credentialing exams generally does not include performing many calculations, but rather asks relative relationships and logical conclusions from the mathematical relationships between variables. In other words, instead of asking you to calculate the resistance to flow for a fluid flowing through a vessel, you may be asked how the resistance to flow will change with changes in parameters that define the vessel. Instead of asking you to calculate a Doppler shift for a given transducer frequency, given a specific angle to flow and a blood flow velocity, you may be asked how the Doppler shift would change if a different transducer operating frequency were used given the same angle to flow and blood flow velocity. Answering this type of “relative” question involves math skills, which many students have not used for a long period of time, or worse, never developed. This last point is precisely why it is so critical for you to learn the basic mathematics, as outlined below.
To learn the basics of ultrasound (Level 1) you will need a proficiency in the basic mathematical functions. Specifically, you will need to:

- Be comfortable with the language of mathematics and translating English into mathematical functions.
- Add, subtract, multiply, and divide.
- Deal with fractions, percentages, and decimal notation.
- Understand exponential form and become fluent with the metric system.
- Understand the concept of reciprocals.
- Understand basic relationships of variables within an equation (proportionality and inverse).
- Perform algebraic manipulation of equations.

To master Level 2, you will need some higher-level math skills such as:

- Understand the difference between absolute and relative information.
- Understand the difference between linear and non-linear relationships.
- Recall or determine the equations commonly used in ultrasound physics and in hemodynamics.
- Understand the basic trigonometric functions of the sine and the cosine.
- Understand and apply the concepts of logarithms and decibels.
- Understand the basics of the binary system (relative to base 10).

To master Level 3, you will not necessarily need to develop many more math skills than suggested for Level 2. However, Level 3 presumes a more fluid working knowledge of the mathematics needed to master Level 2. The few additional mathematical topics that might help with Level 3 but are not necessarily required are:

- Some basic calculus.
- Understand rates of change (derivatives).
- Understanding integration.

How to Learn Mathematics

The good news is I have never encountered a student unable to master the mathematics necessary to pass the examination. The bad news is that learning this mathematics requires a structured approach, time, work, and patience.

A Structured Approach, Time, Work and Patience

Adults don’t learn the same way children learn. Children tend not to be afraid of making a mistake in front of their peers. Adults, in comparison, live in fear and dread that someone will recognize that they are ignorant of even the slightest detail. I believe this approach of learning in fear puts an extraordinarily heavy and unfair burden upon adults in the position of student.

There is no way that anyone will understand everything just by reading the material once. Expecting to understand immediately is not only unreasonable, but puts a tremendous stress on the student. If you realize that learning is a process that only comes slowly over time through work and patience, you will not panic when something isn’t clear the first time. It is not fair to yourself to lose self-esteem because you don’t fully
understand a concept the first time through the material. I often use the analogy that learning is like building a house. Before you can get to the fun part of decorating the interior with intricate art and furniture, you have to go through the backbreaking work of digging a hole in the ground, setting up forms, and building a foundation. Without a solid foundation, the house will never stand.

It is time to dig the hole and do the work necessary so that you can build the foundation.

1. Mathematic Basics

1.1 Numbers

In mathematics, there are many categorizations which group numbers together based on their similar properties. For example, there are counting numbers (the natural numbers), negative counting numbers (the negative natural numbers), the set of all the natural numbers, negative numbers and 0 (called the integers), numbers which can be expressed as the ratio of two integers (rational numbers), and numbers which cannot be expressed as the ratio of two integers (irrational numbers), etc.

Natural Numbers: 1, 2, 3, 4, …
Negative Natural Numbers: -1, -2, -3, -4, …
Integers: -5, -4, -3, -1, 0, 1, 2, 3, 4, 5, …
Rational Numbers: (all numbers which can be expressed as p/q where p and q are integers)
Irrational Numbers: (all numbers which cannot be expressed as p/q where p and q are integers)

For ultrasound physics, you will not need to know precise definitions of all of the various classifications of numbers. What you will need is a general ability to work with numbers including the basic mathematical operations of addition, subtraction, division, and multiplication.

1.2 Basic Mathematical Notation (symbols used in basic mathematics)

Addition +
Subtraction -
Multiplication x
Example: m x f implies the variable m multiplied by the variable f.

* *
Example: t * v implies the variable t multiplied by the variable v.

• •
Example: c • v implies the variable c multiplied by the variable v.

() Example: 3(7) implies the number 3 times the number 7.

No symbol
Example: 3z implies the number 3 multiplied by the variable z.

Division /
Example: m / f implies the variable m divided by the variable f.

+ +
Example: j + k implies the variable j divided by the variable k.

Equality =

Inequalities:

Greater than > Example: g > 3 is read as g is greater than the number 3.
Less than < Example: h < 6 is read as h is less than the number 6.
Greater than or equal to ≥ Example: k ≥ r is read as k is greater than or equal to r.
Less than or equal to ≤ Example: h ≤ 6 is read as h is less than or equal to 6.
Note: Children generally learn to use the letter “x” to stand for multiplication. Once students reach algebra, there is generally a shift that occurs such that symbols other than “x” are often used to denote multiplication. This shift occurs since the letter x is generally used to stand for the unknown quantity in an algebraic expression. Since it is easy to confuse the “x” that stands for multiplication with the “x” that stands for a variable, other symbols become more commonly used. Therefore, there are many symbols used to indicate multiplication, such as: x, •, *, and sometimes (). All of these symbols will be used throughout this text and interchanged freely so as to accustom you to each of these notations.

1.3 Basic Mathematical Definitions

Constant: A number which cannot change (Example: 3, 7, -14, 6 are all constants).

Natural constant: A number which reoccurs naturally in the universe in relation to a specific parameter (Example: pi (π) for circles).

Coefficient: A constant term used as a multiplier of a variable (Example: in the expression 7z^2, the number 7 is the coefficient for the variable term z^2).

Variables: A physical quantity which can vary or change (Example: in the expression 3x^2, the variable is represented by the letter x).

1.4 The Value of Estimating

The ability to estimate quickly is very handy in everyday life. Learning to make good estimates comes from practice and a little bit of thinking. For example, if you were asked to solve the problem what is 19 times 20, and you were not allowed to use a calculator or paper and pencil, what would you do.

Approach 1: (rounding off: estimation)

Find a way of rounding off the numbers into two numbers you can easily multiply in your head. For example 19 x 20 is a little less than 20 x 20. Since 20 x 20 is 400, your first answer would be just a little less than 400.

Approach 2: (actual answer using estimation to simplify the math)

Start with Approach 1 and add one more step. Since 19 x 20 can be written as (20-1) x 20 which is the same as (20 x 20) – (1 x 20), you can actually solve this problem exactly in your head. As you solved in Approach 1, 20 x 20 is 400. Since the correct answer is actually 20 less than 400, the answer is 380.

In terms of ultrasound physics and hemodynamics, there are times when you should estimate the answer to a problem to make certain that you have not made a simple math calculation error. The best way to develop this ability is to put away the calculator and start practicing calculating and estimating in your head.

1.5 Exercises: Estimating

1. What is 24 x 6? (calculate both a rounded off answer and the actual answer)
2. What is 249 x 3? (calculate both a rounded off answer and the actual answer)
3. What is 12 ÷ 3.1? (calculate a rounded off answer only)
4. What is 199 ÷ 5? (calculate a rounded off answer only)
5. What is 37 x 11? (calculate both a rounded off answer and the actual answer)
2. Fractions, Decimal Form, and Percentages

One of the skills in mathematics that we learn earliest is how to deal with fractions and percentages. Unfortunately, the use of calculators has, for most people, caused this skill to deteriorate. Being able to deal with fractions and percentages is critical in physics and medicine.

A fraction consists of two parts: a number on top called the numerator, and a number on the bottom called the denominator. An increase in the numerator with no change to the denominator results in an increase in the fraction (see proportionality in Section 10.1).

For the fraction defined as: $\text{Fraction} = \frac{p}{q}$

*An increase in p implies an increase in $\frac{p}{q}$: \(\text{if } p \uparrow \Rightarrow \frac{p}{q} \uparrow\).

Conversely, an increase in the denominator with no change to the numerator results in a decrease in the fraction (see inverse proportionality in Section 10.3).

For the same fraction defined as: $\text{Fraction} = \frac{p}{q}$

An increase in q implies a decrease in $\frac{p}{q}$: \(\text{if } q \uparrow \Rightarrow \frac{p}{q} \downarrow\).

Often, a fraction is not written in its simplest form, implying that there is a multiplying factor which is common between the numerator and the denominator. In these cases, the fraction can be “simplified”, or reduced to “simplest form” by dividing both the numerator and denominator by the common multiple.

\[\frac{4}{8} = \frac{4 \times 1}{4 \times 2} = \frac{4}{4} \times \frac{1}{2} = \frac{1}{2}\]

\[\frac{14}{200} = \frac{2 \times 7}{2 \times 100} = \frac{2}{2} \times \frac{7}{100} = \frac{1}{100} \times \frac{7}{10} = \frac{7}{100}\]

\[\frac{120}{1200} = \frac{120 \times 1}{120 \times 10} = \frac{120}{120} \times \frac{1}{10} = \frac{1}{10} \times \frac{1}{10} = \frac{1}{100}\]

*Note: the symbol (⇒) stands for the word “implies.”

◊ Examples:
Additionally, all fractions can be written in decimal form and as percentages. Converting from fractions to decimal form is simply the process of division. Converting from decimal form to percentages is just multiplication by 100%.

◊ **Examples:**

\[
\frac{1}{1} = 1 = 100\% \\
\frac{1}{2} = 0.5 = 50\% \\
\frac{1}{3} = 0.333 = 33.3\% \\
\frac{1}{4} = 0.25 = 25\% \\
\frac{2}{1} = 2 = 200\% \\
\frac{5}{2} = 2.5 = 250\%
\]

Another way of thinking of fractions is how many times something occurs per hundred events. As such, it is easy to convert fractions to percentages when the denominator is a factor of 10. (You should notice that this process is equivalent to counting the number of decimal point shifts.)

◊ **Examples:**

\[
\frac{7}{100} = 0.07 = 7\% \\
\frac{2}{10} = \frac{20}{100} = 0.2 = 20\% \\
\frac{43}{1000} = 0.043 = 4.3\% \\
\frac{16}{10} = \frac{160}{100} = 1.6 = 160\%
\]